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1. Introduction.

We start with some basic definitions. To be quite formal initially, a graph is a pair
I' = (G, E). Here G is a finite or countably infinite set, and E is a subset of P;2(G) =
{subsets A of G with 1 or 2 elements}. Given a set A we write |A| for the number of
elements of A. The elements of G are called vertices, and the elements of E edges.

Now for some general definitions for graphs.

(1) We write z ~ y to mean {z,y} € E, and say that y is a neighbour of z. Note that
since we can have {x} € E we have allowed edges between a point z and itself. We
write {x, z} for this edge rather than {z}.

(2) We define d(z,y) to be the length n of the shortest path x = xg, x1, ..., , = y with
xi—1 ~ x; for 1 <4 < n. If there is no such path then we set d(z,y) = oco. (This is
the graph or chemical metric on T'.

(3) T is connected if d(z,y) < oo for all z, y.

(4) Let
B(z,r)={y:d(z,y) <r}, ze€G, rel0,0).

(5) For A C G define the exterior boundary of A by
0A = 0.A={y € A°: there exists x € A with x ~ y}.

Set also
A° = A - 0(A°).

(6) I is locally finite if N(z) = {y : y ~ x} is finite for each x € G, — i.e. every vertex has
a finite number of neighbours.
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From now on we will always assume:

I is locally finite and connected;

We will treat weighted graphs.

Definition. We assume there exist weights (also called conductances) pg,, z,y € G
satisfying:
(i) Hzy = Hyzs
(i) fiay > 0 all 7, 3,
(iii) pgy > 0if and only if z ~ y.
We call (T', u) a weighted graph. The natural weights on I" are given by

1 ifx~y
= ’ 1.1
Hay { 0 otherwise. (1-1)

Whenever we discuss a graph without explicit mention of weights, we assume we are using
the natural weights.

Let piy = p(z) = 3, Hay, and extend p to a measure on A by setting

wA) =3 ula). (1.2)

€A

Since T is locally finite we have:

(i) |B(z, )| < oo for any z and r,

(ii) u(A) < oo for any finite set A.

(Here |A| denotes the number of elements in the set A.)

Condition (iii) above relates the weights to the graph structure. But it is not enough
in some circumstances, since 0 < pizy < g is still possible.

Definition. We say (I", 1) has controlled weights if there exists Cy < oo such that

@>i

whenever z ~ y. 1.3
2% 02 ( )

Controlled weights is called “the pg condition” (where pg = 1/C3) in some papers.

From now on we will (except possibly in some examples) assume that (T', ) has
controlled weights.

Examples.

1. The Euclidean lattice Z?. Here G = Z%, and z ~ y if and only if |z — y| = 1.

2. d-ary tree. (‘Binary’ if d = 2). This is the unique infinite graph with u(z) =d+ 1, and
with no closed loops.

3. We will also consider the ‘rooted binary tree’ B. Let By = {0}, and for n > 1 let
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B, = {0,1}". Then the vertex set is given by B = U2 (B,,. For z = (z1,...,2,) € B,
set a(z) = (z1,...,%n_1) — we call a(z) the ancestor of x. (We set a(z) = 0 for z € B;.)
Then the edge set of the rooted binary tree is given by

EB) = {{z,a(z)} :z € B— By }.

4. Let G be a finitely generated group. Let A = {g1,...9n} be a set of generators, not
necessarily minimal. Write A* = {g1,...9n,97",...9;,'}. Let G = G and let {g,h} € E
if and only if g7'h € A*. Then T' = (G, E) is the Cayley graph of the group G with
generators A.

Z% is the Cayley graph of the group Z @ ... ® Z, with generators gi, 1 < k < d; here
gr has 1 in the kth place and is zero elsewhere. The ternary tree is the Cayley graph of
the free group with 2 generators. Note that the same group G has many different Cayley
graphs.

Random walks on a weighted graph.

Let X = (X,,n > 0, P?,z € G) be the discrete time Markov chain on G with transition
probabilities given by
Hay

Pa
We call X the simple random walk (SRW) on (I', ). Let p,,(x,y) be the transition density
of X with respect to the measure u:

IF’Z(A)(n-l-l = y|Xn = .73) =

P*(X, =y
Pn(z,y) = ¥-
Ky
Note that
pl(xa y) = M = pl(y7 .’E),
Kz by
and that

Puti(@,y) = Y (@, 2)p1 (2, y) s
z€G

It is easy to see that p,(z,y) = pn(y, x).

In these notes I will discuss the relation between the geometry of I' and long run behaviour
of X.

Definition. Let A C G. Set

Ts = min{n >0: X, € A},
T =min{n > 1: X, € A}.
Note that Ty = oo if and only if X never hits A, and that if Xo ¢ A then Ty = TZ. Write
Tx = T{:c} and
74 =Tac =min{n >0: X,, ¢ A}.
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Recall that (T, u) is recurrent if and only if
P* (T, < oc0) =1,

and that this holds if and only if
Z Pn(z,2) = 00.
n=0

The type problem for a graph I' is to determine whether it is transient or recurrent.
A special case is given by the Cayley graphs of groups, and was sometimes called Kesten’s
problem: which groups have recurrent Cayley graphs? In this case, recall that the Cayley
graph depends on both the group G and the set of generators A.

Let us start with the Euclidean lattices. Polya [P] proved the following in 1921, by a
combinatorial argument.

Theorem 1.1. Z¢ is recurrent if d < 2 and transient if d > 3.

The advantage of Polya’s argument is that it is elementary, but on the other hand it
is not robust. Consider the following three situations:
(1) The SRW on the hexagonal lattice in R?.
(2) The SRW on a graph derived from a Penrose tiling.
(3) The graph (T, u) where I' = Z¢4, and the weights p satisfy pgy € [c71, c] if 2 ~ y.
(1) could probably be handled by Polya’s method, but the details would be a bit awkward,
since one has to count loops. Also it is plainly a nuisance to have to give a new argument

for each new lattice. Polya’s method looks hopeless for (2) or (3), since it relies on having
an exact expression for P,(z, ).

The problems we will be interested in are how the geometry of I' is related to the
long run behaviour of X. As far as possible we want techniques which are ‘stable’ under
various perturbations of the graph.

Definition. Let P be some property of a weighted graph (T", u) or the SRW X on it. P
is stable under bounded perturbation of weights (weight stable) if whenever the SRW X
on (', u) satisfies P and p’ are weights on I' such that

¢ gy < Py < Clay, T,y €G,
then the SRW X’ on (T, i’) satisfies P. (We say the weights p and u' are equivalent.)

Definition. Let (X;,d;), ¢ = 1,2 be metric spaces. A map ¢ : X; — X5 is a rough
isometry if there exist constants Cy — Cy such that

Cy M (di(z,y) — C2) < da(p(z), (y)) < Crdi(z,y) + Co, (1.4)
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U Ba(p(@). Ca) = Xo, (1.5)

If there exists a rough isometry between two spaces they are said to be roughly isometric.
(One can check this is an equivalence relation.)

This concept was introduced in 1985 by Kanai for manifolds — see [Kanl], [Kan2]. A
rough isometry between two spaces implies that the two spaces have the same large scale
structure. However, to get any useful consequences of two spaces being roughly isometric
one also needs some kind of local regularity. This is usually done by only considering rough
isometries within a family of spaces satisfying some fixed local regularity condition. (For
example, Kanai assumed the manifolds had bounded geometry.)

Exercise. Let G be a finitely generated infinite group, and A, A’ be two sets of generators.
Let T', TV be the associated Cayley graphs. Then I and T" are roughly isometric.

For rough isometries of weighted graphs, the natural additional regularity is to require
that both graphs have contolled weights.

Definition. Let (I';,p;), ¢ = 1,2 be weighted graphs satisfying (1.3) (i.e. controlled
weights). A map ¢ : G1 — G4 is a rough isometry (between (I'y, u1) and (g, po)) if

(i) ¢ is a rough isometry between the metric spaces (G1,dr, ) and (G2, dr,) (with constants
Cl and 02)

(ii) There exists C3 < oo such that for all z € G4

Cs ' (z) < pa(p(z)) < Capa(w). (1.6)

We define stability under rough isometries of a property P of I' or X in the obvious way.

Remark. Let G = Z, and (for a > 0) let /Lfs,)ﬁ_l =a". Let ¢ : Z, — Z be the identity
map. Then ¢ is (of course) a rough isometry between the metric spaces Zy and Z,, but
if @ # B it is not a rough isometry between the weighted graphs (T, u(®) and (T, u(®).
We will see in Chapter 2 that (I, u(®)) is recurrent if only if & < 1, and that the type of a
weighted graph is stable under rough isometries (of weighted graphs).

Question. Is there any ‘interesting’ property of a weighted graph (I', ) which is weight-
stable but not stable under rough isometries? (Examples of ‘uninteresting’ properties are
I" being bipartite or a tree.)

Definitions.

Define the function spaces

C(G)=R%={f:G - R},
Co(G) ={f : G — R such that f has finite support},
Co(G)={feC(G): foralle >0 {z:|f(x)| > e} is finite. }

5



The (probabilistic) Laplacian A is defined by
Z Py (f (z)) = E* f(X1) = f(=)-
* yeG

For f,g € C(G) define the quadratic form

£9)=3Y D tay(f@) = () (g(2) - 9()),

rzeG yeG

whenever this sum converges absolutely. This is the discrete analogue of [V f.Vg.
Note that A is self-adjoint on L?(T, p):

(—Af,g) ZAf ZZumyg z)(f(z) - f(v))
=357 hayg (@) (F(@) = F@) + 2D taya (W) (F(y) — f(2))

We sometimes call this the discrete Gauss-Green formula.

2. Random walks and electrical resistance.

Doyle and Snell [DS] made explicit this connection, which was implicit in many previous
works, such as [BD], [NW].

Given a weighted graph I' = (G, i) one can interpret it as an electrical network: the
vertices are ‘nodes’ and the edge {z,y} corresponds to a wire with conductivity pig,. (We
only consider ‘pure resistor’ networks — no impedences or capacitors.)

We fix points zg, 21 in G, and suppose that an external source (voltage or current) is
attached at these points. Let B = {xo,z1}. We write I, for the current flowing from z
to y; we have I, =0 if x £ y, and I, = —I,;. Let V(z) be the potential at € G.

To see how to calculate I and V' (and how to define these in a mathematically precise
way) we use two axioms. The first of these is Ohm’s law: in an edge {z,y} we have

Vi) —V(z) = Ixy,uz_yl. (2.1)

The second is conservation of current: at any vertex x € Gy = G — {z¢,z1} we have
> Iy =o. (2.2)
y

By (2.1)
oLy =Y ey (V) = V(@) = gV (2); (2.3)



so by (2.2) V is harmonic on Gj.
Let Vo(zx) =k, k = 0,1. Then V satisfies
V(z) = Vo(z) on B

(DP)
AV(z)=0 on G — B.

Lemma 2.1. Let (T, u) be finite. Then (DP) has a unique solution.

Proof. Let V;, i = 1,2 be solutions, and u = V; — V5. Then Au(z) = 0 for € Gy, while
u(z) =0if z € B. So
E(u,u) = (—Au,u) =0,

and hence u is constant. Since u(z1) = 0 it follows that v = 0. O

The connection with random walks is given by the following. Let
o(x) =P*(Ty, < Typ)- (2.4)
Then ¢(z9) =0, p(z1) =1 and if x € G we have by the Markov property of X

o(z) = E" p(X1),
so that Ap(z) = 0. Thus ¢ is also a solution of (DP) and so, if G is finite, we have ¢ = V.

Remark. If (T, 4) is an infinite transient graph then hp(z) = P*(Tp = 0o) > 0 for some
or all z € G — B. So uniqueness will fail for (DP) since the function ¢ + Ahp is also a
solution of (DP). In this case Ohm’s law and conservation of current are not enough to
specify the potential V' and current I arising from the potential Vi on B. We remark
that if we impose the additional condition that V has ‘minimal energy’, then we do have
uniqueness.

At this point the connection between random walks and electrical networks has done
nothing to help us understand random walks better. The key concept which does make a
difference is that of effective resistance.

Note that in the situation above (current flowing from z( to z; in a finite network) the
current flowing into zo from the external source is, by conservation of current, the same
as the flow out of z¢ into G, that is

F(I,z0) ZIzOy

Definition. The effective resistance between xy and xi, denoted Reg(zo,z1), is
F(I;z)~1, where I is the current flowing from zg to z; when xj is held at potential
k, k =0,1. It is easy to see that Reg(zo,z1) = Reg (1, o).

We have (as V = ¢ and V(zg) = 0)
Reﬂ' 3707371 ZIa:oy Z/j':coy (370))

= umko(wo) = 2o B 0(X1) = o P (T, < T). (2.5)

We have proved:



Theorem 2.2. If (T, ) is finite then
1

P (T, <TH )= — — .
Hao P (T, o) Reg(xo, x1)

(2.6)

The following result was only discovered in 1989 — see [CRRST]. Another proof can
be found in [Tet].

Theorem 2.3. Let (I', u) be a finite weighted graph. Then
E*T,, + E*' Ty, = Rest(z0, 1) u(G). (2.7)
Proof. Write R = Reg(zo,z1). Let p1(x) = P*(Ty, < Tyy), w0 = 1 — @1, and fo(z) =
E*Ty,. Then
(()017 _Af()) = (_A(Ph fO) (28)
We now calculate both sides of (2.8). We have fy(xo) = 0 and
Afo(z) = E* fo(X1) — fo(z) = —
while Apq(z) =0 for x € Gy, and ¢1(zo) =0, p1(x1) = 1. Also, by (2.5) we have
R™Y = oy A1 (20) = pay Apr (1)
The left side of (2.8) is
D 01(@) e + ©1(w0) (A1 (20)) iy = Z% )

TH#T

and the right side is
—Ap1(x0) fo(@o) s + —Ap1(21) fo(w1) iz, = R fo(1).
So,
fo(z1) = E** Ty = Regt (0, 71) Z‘Pl(m)ﬂ'm- (2.9)

Similarly if f;(z) = E*T,,, then
E* Ty, = Rest(€0, 1) Y ¢o(@)p

Since ¢g(x) + ¢1(x) = 1, adding these two equations completes the proof. O

Definition. Let A C G. The graph obtained by collapsing A to a point a is the graph
= (G', E') defined as follows. We have G' = (G — A)U {a}. Let B={z:z ~ b for
some b € A}; then
E'={{z,y}:2,y€ G- A} U{{z,a} : z € B}.
We define weights on (G', E') by setting p;,, = pay if 2,y € G — A, and
lj’la:a = Z ,Umb-
beA

Note that p!, < gz < co. The graph I need not be locally finite, since the new point a
might have infinitely many neighbours, but will be if either A or G — A is finite.
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Corollary 2.4. (See [T1]. Let (', 1) be a graph, and A C G be finite. Then

E*T4 < Reg(z0, A°)u(A).

Proof. This follows from (2.9) on collapsing A€ to a single point . Note that as ¢ (zo) =0
we obtain on the right hand side

Y pi@)pe < u(G - A).
TH#xTo,tEA

Remarks. 1. Note that in an unweighted graph u(G) = 2|E].
2. Let z,y,z € G. Then
E°T, + BYT, > B°T,,

EYT, + E°T, > B*T,;

adding one deduces that Reg(x,y) + Ret (Y, 2) > Resr(z, 2). Thus Reg(.,.) defines a metric
(‘the resistance metric’) on G. (See Theorem 1.6 in [Ki].)

Example. Suppose (I, ) is a transient weighted graph, {z¢,z1} is an edge in I', and
there is a finite subgraph G1 = {z1,...,2,} C G ‘hanging’ from z;. More precisely, if
y € G1 then every path from y to z¢ passes through z;. Then we can ask how much the
existence of G; ‘delays’ the SRW X, that is, what is E*1T, 7

Let Go = {zo,...zn}, and work with the subgraph generated by Gy, except we
eliminate any edges between xy and itself. Write u® for the measure on Gy given by (1.2),
and for clarity denote the hitting times for the SRW on G by T, 5 . Then, by Theorem 2.3,

E'mofl-;,(:)1 + Elefgo = Reff(afo, .731)/1.0(00).

Since Eon(g]_ = 17 Reﬁ('TO, ',I;].) = /’l’;()l,wjj /’I’O(GO) = /’I’(Gl) + /’l’;ol,:l}17 a‘nd EmlTa(:)o = EwlTZE07
we obtain G
E$1T$0 _ ﬂ'( 1) )

Maco »T1

Transience and Recurrence

We can extend the definition of effective resistance from pair of points to pairs of sets
in a straightforward fashion. Let G be a graph (finite or infinite), B; be disjoint sets, and
suppose Gy = G — (Bg U By) is finite. Then Reg(Bo, B1) is the same as Reg (2o, 1) in the
graph IV obtained by collapsing the sets B; to single points z;. (A sufficient condition for
I to be locally finite is that at least one of By, By is finite.)

Let (T, ) be an infinite weighted graph, and let (A,) be finite with A4,, T G — i.e.
A, C Aps1, UA, = G. Assume that B(zg,1) C A;. We define

Res (x0,00) = lim Reg (20, AS). (2.10)
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Lemma 2.5. (a) If Ay C Az then Reg (o, AS) < Resr(x0, AS).
(b) Reg (o, 00) does not depend on the sequence (Ay,) used.

Proof. As 174, < 7Ta, (a) is immediate from Theorem 2.2. (We will see a better proof
later.)

(b) Let A!, be another sequence, and denote the limits in (2.10) by R and R’. Given n
there exists my, such that A, C A], . So, by (a),

Regt (20, A7) < Rer (20, (47,,)°) < lim R(x, (4,,)°) = R'.

Thus R < R’ and similarly R’ < R. d
Theorem 2.6. Let (I', u) be an infinite weighted graph. For zy € G

1

2 PO (T =00) = —————.
:u' 0 ( ) Reﬂ‘(.’E(),OO)

Zo

(2.11)

Proof. Let A,, = B(zo,n). Let G, be the finite graph obtained by collapsing AS to a single
point 1. Then by Theorem 2.2 piz P™ (Tye < Tjt) = Reg(x0, A5)™". Letting n — oo
gives (2.11). O

Corollary 2.7. (a) (T, p) is recurrent if and only if Reg(z1,00) = 0.
(b) (T, ) is transient if and only if Reg(z1,00) < oc.

Examples. 1. Z is recurrent since Reg({0},[—n,n]¢) = 2(n +1).
2. For Z? one reduces effective resistance if one ‘shorts’ boxes around 0. (See *** below
for a proof of this.) Then

1 1 1 1 11 1 1
Rg(000) = -4+ — 4+ — 4+ —4...= ~(14+~4=+=+..) = oo,
e(0,00) =+ ottt Ut gtgtgt)=o00

2. Consider the graph (I', ) mentioned in Lecture 1, with vertex set Z, and weights
Pn.nt+1 = ™. Then Reg(0,n) = Zf;(} a~ ", so that (T, u) is transient if and only if o > 1.

Energy and Variational Methods

In the examples I used various methods of calculating or bounding effective resistance
techniques without any justification. But as facts like “shorts decrease resistance” should
be provable from the definition, I'll now go on to discuss in more detail the mathematical
background to effective resistance.

Let (T, u) be a finite weighted graph, and By, By C G with By N By = (). Write
B = ByU By, Gy = G — B. We now introduce two variational problems. For the first, set

f(BOaBl) = {.f € H2(G) : f|B1 = 1af|Bo = O}a
and consider the energy minimising problem:
Cet (Bo, B1) = min{&(f, f) : f € F(Bo, B1)}- (VP1)
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We call Ceg(Bo, B1) the ‘effective conductance’ between By and Bi, and will (of course)
find that it is the reciprocal of Reg(Bo, B1).

The second problem is to minimise the energy of flows from By to Bi. We call
= (Jzy) a flow from By to B if
(1) Zy Jzy = 0if z € Gy,
(2) Jwy = _Jywa
(3)
We call the flux of J the total amount of flow out of By, that is

F(J,Bo)= > Jay.

T€EBy Yy

Since Jzy = —Jy; and Zy Joy =0 if 2 ¢ B we have

O—ZZJW SN Jey+ DY Jey=F(J,Bo) + F(J, By),

TEBy Y T€EB; Y

giving F'(J, B1) = —F(J, By). Given flows I, J let

E(LT) =2 LoyJuyling;

T Yy~
thus E(I,1) is the energy dissipation of the flow I.

The second variational problem is:
R(By, By) = inf{E(J,J) : J is a flow from By to By with F(By,J) =1 }. (VP2)
Theorem 2.8. In a finite graph Ceg(Bo, B1) ™! = Reg(Bo, B1) = R(Bo, B1)-

Proof. Let ¢(z) = P*(Ts, < TB,), and let Iy, = pgy((y) — ¢(z)) be the flow due to ¢.

Then
Regt(Bo, B1) ™' = F(I,Bo) = Y _ > Iy
z€By Yy
= > tay(o) — (@) = > pelp()
$€Bo Yy $€BO
Also,

E(p, ) =E(1—p,1—9) = (A1 =), 1—9)=(Ap,1—0) = > Ap(x)e

So we deduce that £(p, ) = F(I, By) = Reg(Bo, B1) ™!
Now let f be a feasible function for (VP1). So fp, =k, k = 0,1. Then

E(p, f—p)=(—Ap,f—¢p) =0,
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so E(p, f) = E(p, ¢). Hence

It follows that ¢ is the unique minimiser for (VP1).

To handle (VP2) we first prove an identity. Let J be any flow feasible for (VP2), and
let f be feasible for (VP1). Then

NN I (F W) — F@) =3 Y Ty f ) = 3 D Tay (@)
=3 gt ) =3 F @)D Ty

yEeB T
= —F(J,B)) = F(J,Bo) = L

Then, as Imyu;yl = o(y) — ¢(z),

E(IL,J) =33 Juylo(y) — p(x)) = 1.

Let I" = Reg(Bog, B1)I, so that I’ is feasible for (VP2). Then E(I',J) = Reg(Bo, B1), and
taking J = I' we deduce that

0< E(J—TI',J-1I)=E(J,J) - EITI).
Hence I’ is the unique minimiser for (VP2), and R(By, B1) = Reg(Bo, B1).

Remarks. 1. We can still define (VP1) and (VP2) if I is infinite, and it is still true that
Cet (Bo, B1) = Reg(By, B1)~'. However, there are problems with (VP2). For example,
let T consist of two copies of a rooted binary tree, denoted Gy, G1, with roots xy and zq,
connected by a path A = {zo,y1,y2, 21} of length 3. Then if B; = {z;} it is clear that
Re (B, B1) = 3 and Cegr(By, B1) = % However, one can build a flow I (going from zq to
infinity in G, coming from infinity to z; to infinity in G1) with E(I,I) = 2.

This example suggests that to handle flows on general infinite graphs one needs to
impose correct boundary behaviour at infinity. For more on this see Chapter 3 of [LyPe].

2. If G is infinite, By is finite then Theorem 2.8 can be extended to the case “B; = 00” if
we impose the right boundary conditions at infinity. In the case of (VP1) these are that
f € Hy(G). This is the closure in the norm ||f|| = (E(f, f) +||f]|2)*/? of Co(G).

For (VP2) we just take By = () in the definition of a flow from By to Bj, and require
F(J,By)=—1.

Using Theorem 2.8 we can prove easily the validity of standard operations on resis-
tances.

Definition. (‘Shorts’ and ‘cuts’). Let (T, u) be a weighted graph, and e = {z,y} be an
edge in T'. The graph (I'(®), u(©)) obtained by cutting the edge e is the weighted graph with
vertex set G and weights given by

/L(c) — {,uwza {’IU,Z} 7é {-’IT,’!/},
s 10, Aw,zp #{z, )
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(Thus the edges of I'(®) are the edges of (I, ) with e removed.)
The graph (I'(®), (%)) obtained by shorting the edge e is the weighted graph obtained

by identifying the vertices z and y. More precisely we take G*) = G — {y}, and
1(52 = Pwz, W,2ZE G(s) - {.73},
lﬁq(f% = Pwz + Pwy, W E G,

Corollary 2.9. Let u, p' be weights on T.
(a) If p < Cqp’ then

Cet (Bo, B1) < Clch(Bo,Bl), (2.12)
Regt(Bo, B1) > C1 ' Rig(Bo, By).

(b) Shorts decrease Reg.
(c) Cuts increase Reg.

Proof. (a) Since & < C1&’, (2.12) is immediate.
(b) and (c) Fix an edge e, and write £x(f, f) for the energy of f in the graph (I, u?),
where p) = per if € # e and p = X. Then we have

EOLN =811 €W ) = lim (£, 1),

and the result follows from (a). O

The following reformulation of Theorem 2.6, using the langauge of Sobolev inequalities
rather than resistance, is useful and connects with the ideas in Section 3.

Theorem 2.10. Let zg € G. (I', p) is transient if and only if there exists C; = C1(xg) <
oo such that

|f(.7,'0)|2 < Clg(f, f) for all f - C()(G) (213)

Proof. Let B,, = B(zg,n). Suppose first that (I, 1) is transient, and let K = Reg(x0, 00),
so that K = lim,, Reg (2o, BS) < 00. Let f € Co(G) with f(z¢) = 1; then f is feasible for
(VP1) for all large n. So

E(f. f) > Regt(wo, BS) ™' > K~ = K| f(zo) .

Now suppose (2.13) holds. Then using Theorem 2.8 we have that Ceg(xo, BS) > C; !
for all n, so Reg(zo,00) < Cy. O

Remark. Using these ideas one can now prove that transience and recurrence and stable
under rough isometries. Details of the argument can be found in [W].
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Corollary 2.11. The type of a Cayley graph does not depend on the choice of the (finite)
set of generators.

Proof. This is immediate from
(1) the stability of transience and recurrence under rough isometries, and
(2) the fact that two Cayley graphs of a group are roughly isometric. O

3. Isoperimetric inequalities and applications to transition densities.

We continue to assume that (I, ) is a locally finite weighted graph satisfying the
controlled weights condition. For A, B C G set

E(A,B)={e={z,y}:z € Ay € B},

=Dty

€A yeB

Definition. Let ¢ : Ry — R, be increasing. (I, u) satisfies a v - isoperimetric inequality
(denoted I(3))) if there exists Cy < oo such that

Y(u(A)) < Copp(A;G — A)  for every finite A C G. (I(y))

For o0 € (1,00) we write (I,) for (I(¢)) with ¢(t) = t'=Y* and (I) for I(¢) with
P(t) =t.

If gy > 1 for all z then p(A)@=D/e > y(A)(@ =D/ if o4 > o/. So (I,) implies (I3)
for any 8 < a.

Examples.

1. The Euclidean lattice Z¢ satisfies I.

2. The binary tree satisfies (/) with Cp = 3.

3. The Sierpinski gasket graph does not satisfy (I,) for any o > 1.

IVl = 2ZZumy|f f(@)P.

We will be mainly interested in the cases p = 1 and p = 2: of course ||V f|]3 = E(f, f).
Note that if f =14 then

Now define

VAR =" thay = np(A4; A°). (3.1)

TEA yeA®
Theorem 3.1. Let o € (1, 00]. The following are equivalent:
(a) (T', u) satisfies (I,) with constant Cj.
(b) (T, ) satisfies the Sobolev inequality
fllaja—1 < Col[VFl[L  for f € Coo(G). (Sa)
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Proof of (b) = (a). Given a finite subset A C G set f = 14. Then if a € (1,00)

(a=1)/a
HfHa/(a—l) = (Z Um)) 1 _ M(A)l—l/a’

TEA

while by (3.1) ||V f||1 = ur(A; A°). For a = oo (S}) takes the form || f||; < Co||V f||1, and
setting f = 14 gives u(A4) < Coup(A, A°). d

To prove that (a) implies (b), first define
A(f) ={z: flz) > t}.
Lemma 3.2. (Co-area formula). Let f : G — Ry. Then

IVfl[= /Ooo ne(Ae(f), Ay(f)°)dt.

Proof. We have
IVFIl =) tay (F(y) = f(2))4
z oy

=)ty / L(f(y)2e> f(2)) At
T oy 0
:/0 dtzzﬂwyl(f(y)z»f(w)):/o dtps(Ae(f), Ae(f))- O
T oy

Proof of Theorem 3.1, (b) = (a). First, note that it is enough to consider f > 0. For, if
[ is general, and g = [f| then ||g[|, = [|f]|, and [[Vgl[s < ||V f]]:.

The idea of the proof is to use (I,) on the sets Ai(f). However, if one does what
comes naturally one finds one needs to use Hardy’s inequality:

/Oooptp_lf(t)dt < (/Ooopt”_lf(t)dt>p-

We can avoid this by using a trick due to Rothaus ([Ro]).
First let 1 < a < oo. Let p = a/(a — 1), and ¢ be the conjugate index. Let
g € LY (G, ) with ||g||q = 1. Then
CollVfll = [ Conn(elN AP > [ um(hu(r) o
0 0
=/0 dtl\lm(f>||p2/0 dt||gla.plh
— [ a3 g@netnin @) = X ghne [ etz
0 7 - 0

= f(@)g(@)pe = ||F9ll1-
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So,
[1f[lp = sup{l[fgll1 : llgllg = 1} < Co[[V fl1.

For a = oo take p =1, g = 1 in the calculation above. Il

Theorem 3.3. Let (T, u) satisfy (I,) with a € (2,00]. Then (', u) also satisfies:

||f||2a/(a—2) < Clg(fa f)a f € COO(G) (Sczx)

Proof. As before it is enough to prove this for f > 0. Let first f € Cy(G), and 2 < a < 0.
Set

2 —1 2

L, so that 28 —2= a

B =

Y

a—2 a—2

and let g = f#. Then
10llasary = 17 lagtocy = 11 acny = 112 ey
If we were working with functions on R? then we would have
clgllaja-ny < [ 1Vl = [ 19721 =5 [ #2911 (32)
<ol [ IV [ PP = € G D fmy 39)

However, in a discrete space one cannot use the Leibnitz rule to obtain the final equality
in (3.2). This is not a serious difficulty: if a < b then

b
b — af = / BF~1dt < (b—a)BHP 1.

So, for any a,b € R
% — aP| < Blb — a|(aP~1 +b°P7Y).

Hence,

Vgl = 3 Zuwylf — f()?|
< 2ﬁZuzy|f FOIF @)+ F(y)P Y
=/32uzy\f<a: — f)If(@)P!

T,y

< BES )P malf (@) 2D = BES, )11 £ 502y

So, by Theorem 3.1
Hf||2a/(a 2) — HgHa/(a—l) < Col|Vglly < c€(f, )1/2Hf||2a/(a 2)°

16



Since f € Cy(@G) all the terms are finite, so
1£ll2a/ta-2) < CECF DY
If @ = oo then we take g(z) = f(x)?, and the same argument gives
1F15 = llgllx < Col|Vall < c€(f, /)| £]]2-
Finally, if f € Co(G) let f, = (f — 1/n)4 € Co(G). Then by (3.4)

1/l 2a/a—z < € E(fn, fn) < E(F, 1),

and letting n — oo gives the result.

Corollary 3.4. Let (I, u) satisfy (I,) with o € (2,00]. Then (T, ) is transient.

Proof. Let xg € G, p=2a/(c — 2). Then

£ (zo)|* < pgl/P | f112 < cE(f, f),

and (T, ) is transient by Theorem 2.10.

Theorem 3.5. Let o > 2. The following are equivalent:
(a) For f € C(G)
g(fv f) > CS||f||ga/(a—2)'

(b) T satisfies the inequality

EL 1) > enllFIT I FIITY e, FeLllnL?

(3.4)

Remark. (N,) is called a ‘Nash’ inequality — the terminology, as well as Theorem 3.5,
is due to [CKS]. Nash used inequalities of this type in his 1958 paper [N] (see the first
inequality on p. 936) to obtain Holder continuity of solutions of divergence form PDEs.

1

Proof. (a) imples (b) is easy. Let p, ¢ be conjugate indices with p~! = (a — 2)/(a + 2),

¢! =4/(a+ 2). Then using Holder’s inequality and (a) we have:

115 =D (@) he = Y |f(@)]P*/ 2| f ()| D,

T

< (T l@p=ra2)" (35w’

T x

/a

2/ (a+2 4/(a+2
= IFIe D £l e+

< e (f, f)e D .

17



Rearranging gives (Ng).
(b) implies (a) is harder, but we will not need this. O

We now show how the techniques introduced above can be used to give bounds on
transition densities. It is usually slightly easier to handle the density of the continuous
time simple random walk (CTSRW) on (I', u): while the essential ideas are the same in
both discrete and continuous time contexts, discrete time introduces some extra (mainly
minor) complications.

Let Y = (Y;,t € [0,00),P*, 2z € G) be the continuous time Markov chain on G with
generator A. The process Y waits an Exp(1) time at each vertex z, and then jumps to some
y ~ x with the same jump probabilities as X, that is with probability P(z,y) = tgy/ e
Thus the process Y may be constructed from X and an independent rate 1 Poisson process
N, by setting

Y, = Xn,, t €]0,00). (3.6)

Remarks.

1. In general for a continuous time Markov chain there is the possibility of ‘explosion’, that
is that the process will reach the boundary of GG in finite time. However, since Y cannot
explode, since it waits an average of one time unit at each state x before jumping to the
next state.

2. Given set G and a collection of bond conductivities ji 4, the mutual energy of functions
f,9 € Co(Q) is given as usual by

Ef,9) =73 D Y hay(f(2) = F)(9(x) — 9(v))-

rzeG yelG

Now let v, > 0, so v defines a measure on GG. We can associate an operator L = L, to the
pair (€,v) by requiring

5(fvg) = <_Lfa g>l/ = - ZLf(.T)g(ZU)Vw, fvg € CO(G)

Using the discrete Gauss-Green formula we deduce that

L,f(z) = ’:—:Af(:v) = ;0> 1y (F(y) — f(2)).

The process Y” with generator L, waits at = for an exponential time with mean v/,
and then jumps to y ~ = with probability P(z,y) = fizy/ e

3. In the general terminolgy of Dirichlet forms (see [FOT]), one would say that Y is the
Markov process associated with the Dirichlet form £ on L?(v). Note that the quadratic
form £ alone is not enough to specify the process: one needs the measure v also. Given
two diferent measures v, v/, the processes Y, Y¥' are time changes of each other.

4. When looking at random walks on a graph (I, ) there are two natural choices of v.
The first (chosen above) is v = p, while the second is v, = 1. If we wish to distinguish
these processes, we call them the fixed speed and variable speed continuous time simple

18



random walks on (I, z) . In what follows we will just discuss the fixed speed CTSRW.
(Note that explosion in finite time is a possibility for the variable speed CTSRW.)

We write g;(z,y) for the density of Y; with respect to u. So,

P*(Y; =
qt (.’13, y) = ( i y) :
Hy
Using the representation (3.6) we have
Pr(Yi=y)=Y P (Xp=y,Ne=n)=>_ pn(z,y)uP" (N, =n).
n=0

Hence

o0 —

Z pnxy)

giving the transition density of Y in terms of that of X.

Using this, or otherwise, it is easy to check that ¢; satisfies the continuous time heat
equation on (I, u):

0
aqt(x, y) = Ag(z,y).

We also have the Chapman-Kolmogorov equation:

Gt+5 (7, 2) ZQt z,y)qs(y, 2) by = (4% 5 45)-

Thus g;(z,-) € L? for each z,t.

The following relation gives one key to the control of ¢;(z,z). Let x € G, () =
(‘Zfa Qf) = @2t (:13, x) Then

P(t) =2(2qf, ¢F) = 2(Aqf, af) = —2E(af, ¢F). (3.7)

Note that (4.7) shows that ¢:(z, x) is strictly decreasing in ¢. Differentiating a second time
we have

Y(t) = 4Agf, Agf) > 0, (3.8)
so 1)(t) is strictly increasing.

Theorem 3.6. Let o > 1. The following are equivalent:
(a) T satisfies the Nash inequality (Ny).
(b) There exists cy such that

gt (z,y) < % t>0, z,y €G. (3.9)
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(c) There exists iy such that

/
CH
ne/2’

pn(z,y) < n>1, z,y €G.

Proof. 1 will only prove the equivalence of (a) and (b). (a) = (b). First, it is enough to
prove (3.9) in the case x = y. For,

a(z,y) = Z dt/2 (z, Z)Qt/z (y, 2)

< (Y arso(a,2)%2) 2 (X @y, 2)%02) ' = (ae(a, 2)ae(y, ) V2.

Fix z € G and set
P(t) = (¢, &) = q2e(z, ).
Now ||¢Z||1 = 1 and ||¢?||2 = 9 (t) < oc. So ¢F € L' N L?, and using (3.7) and (N,)

/. T T z||2+4/a) x| |—4/a «a
b(t) = —26(g7, qF) < —enllaf I3 gf |17 = —enyp(t)

This differential inequality for ¢ now leads easily to estimates on its asymptotic behaviour.
Let ¢(t) = v¥(t)~%/%; then

blt) =~ T > o
So ¢(t) > p(0) + cat > cot, and thus ¢(t) < (cat) /2. O
(b) = (a). Suppose that ¢ (z,y) < c1t=%/2 for all z,y,t. Let f € L' N L?. Then
QS5 = 10lQef (2)?
<Y D (i, y) () ) (as(, 2)| £ (2) | 12)
z oy oz

=D > a2 F W (D) myps < ea(26)72| fI3. (3.10)

Set ¥ (t) = ||Q:f||3, and write ¥(0) = ||f||3- Then as in (3.7), (3.8) we have

b(t) = 2(2Quf, Quf) = 2(AQuf, Quf) = —26(Quf, Qi f) »

while

P(t) = 4(AQ+f, AQ:f) > 0.
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Thus 4 is increasing, and so 9(t) > ¥(0) = —2&(f, f). Hence

t . t .
w0 = 0(0) = [ ds)ds > [ d0)ds = ~2£(£.1).
0 0
Rearranging and using (3.10) gives that, for any ¢,

IF113 = (&) o If13 = cat=/2II£11F
t = t '

26(f,F) 2 (3.11)

We could now choose ¢ to optimise the right hand side of (3.11), but we only lose a constant
if we choose ¢ so that cot=*/2||f||2 = 3||f||3. Then (3.11) yields

26(f, 1) > el FIBULFIBALAID = ell £ 1 £ 1

O
Examples. 1. Let T = Z<, uf(c? be the natural weights on Z¢, and uély) be weights on Z4
satisfying MSZ) > coug}. Let & be the Dirichlet forms associated with T, u(*), and write
X @y for the associated SRW (discrete and continuous time). By Polya’s calculations
we know that the SRW on (T, u(9)) satisfies the bound p'¥ (z,y) < en—%2. Using (4.4) it

follows that qt(o) (z,y) < ct~%?2, so by the Theorem we have that the Nash inequality (N)
holds with respect to &.

Since &1(f, f) > cofo(f, f), we have also (N4) with respect to £, and therefore the
bound ¢{”(z,y) < /t=#2 holds.

2. The following simple proof of the Nash inequality in R? is due to Stein — see p. 935 of
[N]. Let f € C?(R?%), and f(6) be the Fourier transform of f. Then

[17@ras = [ 157 = 1113,
while
E(f,f):/WfP:/|0|2|f(9)\2d0.

However,

~

F(0)] = (2m)~"/2) /eigwf(x)daf\ < (2m) 72| f |-

Let 7 > 0, and Cy be the volume of the unit sphere in R?. Then

2 _ "9 2 "9 2
= [ ders [ - ifo)
< CartlfI2 + / 6/r 217 (0)

B(0,r)c
< Car?||FI3 +r72E(f, ).
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If we choose r so that the last two terms are equal then r?t2 = £(f, )/||fl|?, and we
obtain

L2 < CLE(f, M@ |/ @+2)
which is (V).
3. Let G be the join of two copies of Z% at their origins, which we write as G, i = 1, 2.

Let f € Co(G@), and write f; = f|g,. Choose i such that || f;]|3 > 3|/ f||3. Then using the
Nash inequality in G,

1£:l12 < 201 £:l13 < c€(fi, F) YD) IV O < e (f, )Y @D pl1 7/ @)

so G also satisfies (Ng). Thus, by Theorem 3.6 the transition density of the CTSRW on
G also satisfies the bound

a(z,y) < Ct=42,

Definition. Let zy € A. (T, ) satisfies the rooted isoperimetric inequality (IEF) if
pg(A;G — A) > cu(A)@~Y/% for all connected A with zy € A.

This arises in percolation contexts — see [BLS].

Problem. Does (IE) imply that
qt (w0, zo) < ct™*/?? (3.12)

If we try to follow through the arguments above we can obtain the inequalities (S}),
(Sl) and (NV,) for functions f such that A¢(f) is connected and contains x¢ — call this
space of functions R. But to prove (3.12) by the method of Theorem 3.6 we would need
gt (o, ) € R, which is not true in general.

We have seen that if & > 2 then (I,) implies (N,). The argument above, which goes
via (S2), cannot work for a € (1,2]. See Coulhon [C1] for the proof of

Theorem 3.7. (I,) implies (N,) for a € (1,00).

The survey [C1] also presents a more systematic way of viewing this (and other) families
of Sobolev type inequalities.

Example. The graphical (pre)-Sierpinski carpet I'sc is an infinite connected graph (a
subset of Zi) which is roughly isometric with the (unbounded) Sierpinski carpet. For a
precise definition see [BBGSC].
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Figure 3.1: The graphical Sierpinski carpet.

Let A, = GN[0,33"]2. Then p(A4,) ~ 8", and pg(4,,G — A,) ~ 2". So if G
satisfies (I) then
m > C(Sn)(a—l)/a’

which implies that o < 3/2. In fact (as is fairly clear) the sets A,, are the worst case as
far as isoperimteric properties in GG are concerned.

Theorem 3.8. (Osada, [O1].) T'sc satisfies (I,) with o = 3/2.
Using this and Theorems 3.6 and 3.7 it follows that the SRW on G satisfies
Pu(@,y) < en™3/4, (3.13)
However, this is not the correct rate of decay; in [BBGSC] it is proved that
Pz, y) X n77,

where v = (log 8)/(log 8p). Here the exact value of p is unknown, but it is close to 5/4, so
that ~ ~ 0.90 > 0.75.

The reason (3.13) is not best possible is that there is a loss of information in passing
from (I,) or (SL) to (N,). The inequality (SLl) implies that (in a certain sense) the graph
' has ‘good geometry’, while (N,) or (S2) imply ‘good heat flow’. Good geometry is
sufficient, but not necessary, for good heat flow.
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4. Evolving random sets and upper bounds.

This idea is due to Morris and Peres [MP]. The account here is rather less general
than that in [MP], and concentrates on the case of infinite graphs.

Let (I, #) be an infinite graph, and K be the set of finite subsets of G. We define a K
valued Markov Chain (S,,n > 0) in the following way. Let

p(z, A) = Z Hyz- (4.1)
yeA

Let (Ug,k > 1) be i.i.d. U(0,1) r.v. Given Sy, ..., Sp, let

Sn+1 = {y: u(y, Sn) > pyUnt1}- (4.2)

Notes. 1. y cannot be added to S,, unless y € 05,,.
2. Ity eSS then y € Sp41.
3. () is absorbing for (S,,).

We write P4 for the law of (S,,) starting at So = A.

Lemma 4.1. P, (y € Sn) = papn(z,y).

Proof. If n = 0 then P,y (y € So) = 64y, while pzpo(z,y) = ps0sy/ 1ty = 6zy. Now suppose
the result holds for n, and for all , y. Then

1(y, Sn)

Ky

Py (y € Sny1) = By P(Upyr <

)
= Eqaytiy ' 14(Y, Sn)
= E(yy " Z Lzes, )by

= Z lf'y_lluyzpn(xa 2)
z

=tz »_ 21(Y, 2)Pn (2, ) thz = oD (2, ).

z

]
Lemma 4.2. ;(S,) is a martingale.
Proof. We have
E{m}(ﬂ(sn-l-lﬂsn) = ZﬂyP{z}(y € Sn-l-1|Sn)
y
Y; Sn
=3, M5 Sy, 8, = (s
y Y y
0
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Lemma 4.3.
(E{m}ﬂ'(sn) 1/2)2
2 '

Dan ('/1:7 :E) S
Proof. Let (Sy), (S),) be independent copies of the ERS process. Then

pzn(wa .73) = an (il?, y)pn(y’ x)'uy

=132 ) Pay(y € Sn)’py
)

=122 Pray(y € Su) Py (y € Sh) iy
y

= MfE{w}(Z 1<yesn)1(yesa>ﬂy)
Y

<1152 Bay (3 Lwesm) 2 (D 1esyym) ')
) Y

= M;2E{m} (/,L(Sn)l/2/¢l,(5;)1/2) = M;2(E{m}“(sn)1/2)2'

These three results are quite general, and use almost nothing. (They also hold for
non-reversible chains, but I will not go into that.)

We now make two assumptions on (T, p) :

(1) (T, p) satisfies (I).

(2) The random walk on (T, u) is lazy: that is P*(X; = z) > 1. Note this implies that
T %,ux for z € G.

We now use Lemma 4.3 to bound pa,, (z, x). Since u(S,) is a non-negative martingale,
it converges as n — oo. If u(Sy,) is large, then (I,) implies that u(S,,S:) is also large,
so that u(Spy1) — p(Syn) should also be large on average. This should then prevent u(S,,)
from settling down at some non-zero value, and lead to some control on the speed at which
w(Sp) — 0.

We now implement this intuition. As we will see the argument uses a number of clever
tricks.

For A C G (with A # () set

_ (4, A%
=T

The lazy condition implies that y(A4) < 3, and (I,) gives
Y(A) > cp(A)~He, (4.4)
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Let Sp = A and suppose U; < % If y € A then p(y, A) > pyy > %uy > Uypy, so
y € S1. If y € A then y € S if and only if Uy < u(y, A)/py. So,

1 ify € A,

1y
Pa(y € 51|U1 < 3) = {QM(y7A)/,uy ify € 0A.

Hence
Ea(u(S1)|U1 < 3) = u(A) +2p(A, A%) = p(A)(1 + 2v(4)),

and as p(Sy) is a martingale
E4(u(S1)|Ur > 3) = u(A) — 2u(A, A%) = p(A)(1 - 2v(A)).
Now it is easy to check, by squaring, that for [¢| < 3,
la+2)2+ -2 << (1-)V2 <1 - L%
So, using Jensen,

Ea(u($1)"?) = 3Ea(u($1)"*|U1 < 3) + 5Ea(u($1)Y?U1 > 3)

(
Ea(u(S1)|Un < H)Y? + LEa(u(S1)|[Ur > )2
(B(A) (1 + 2y(A)))? + L(u(A) (1 — 27(A)))*/?
(A)M2(1 - v(4)%/2).

IN

“: IR N N

IN

Thus by (4.4), if A # 0,
Ea(u(5)"7%) < p(A)2(1 — ep(A)/%). (45)

Lemma 4.4. Let M,, be a non-negative martingale, and § > 0. Then

1
E(M;? 1(Mn>0))1_6 > (EMY/?)'e.

Proof. Let 7, £ be non-negative r.v. with Ep = 1. Then E(¢) = En¢ defines a new
probability P, and applying Jensen

Eng't? = B¢ > (Ee)'HP = (Eng)'.

Then

1
—50 (1 )
2 1(Mn>0) EM M 1(Mn>0)

> (EMuM; 2101, 50)) 0 = (EM,/?)H°.

N[

EM,y;
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Now let Y, = 1u(S,)Y/2, and y, = E{4,}(Ys). Then (4.5) gives

E{mo}(Yn-i-llYn) <Y,- CYnl_4/a1(Yn>O)- (4-6)
So by Lemma 4.4,
1
_4/a 5(1—-4/a) o
Yn+1— Yn < —cEY, "Y1y o) = —cEM,;? Lim,>0) < —cyp T/ (4.7)

This (apart from the power) is the discrete analogue of the differential inequality ¢’ (t) <
—cp(t)1+2/ that arose in Theorem 3.6. Let § = 4/c; we have

Ynt1 < Yn(1 — cyl) < yn exp(—cyl).

Then y
/ t=0dt > y;& log(yn/Yn+1) > ¢,
Yn+1
S0
Yo

n g/ t=170dt < ey ?,
giving

Yo <en”t n> L

By Lemma 4.3 we obtain

Theorem 4.5. Suppose (', u) satisfies (I,), and random walk on (T, 1) is lazy. Then

pan(To, 20) < en™?,  n>1.
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